If it's not what You are looking for type in the equation solver your own equation and let us solve it.
6n^2-5n-50=0
a = 6; b = -5; c = -50;
Δ = b2-4ac
Δ = -52-4·6·(-50)
Δ = 1225
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1225}=35$$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-5)-35}{2*6}=\frac{-30}{12} =-2+1/2 $$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-5)+35}{2*6}=\frac{40}{12} =3+1/3 $
| (x+3)^2=4 | | 11x-3-4=20 | | 4x+8-3x=7 | | 27-9x=4 | | 11x-3-4=12 | | 11x-3-4=78 | | -3-3=-4(2x+7) | | 21*2-x+12x=44 | | 11x-3-4=45 | | 9x+12=9x+4 | | 9x/4-x=x/8-7/2 | | 0=6v+-v | | 3(2+y)-y=4+2(y-1) | | 6x+24-2x-2=2x+20 | | 60w+7=120w+5 | | 0.18x+27.60=0.14x+40.40 | | 1/2(4x-6)=6x+1-2x | | 3y-12-4=57+5y+6-3y | | -210=-6(7+7x) | | Y=5x2+30-25 | | 4x^2-33x+46=-4x+1 | | 7-7k-6k=-7k-7 | | 3x-4=2x=8-5x | | 12(5x+4)=4(x+124) | | 3x+7(3x+2)=4(6x+3)+2 | | 7x+9=3x-9 | | 5x-11=6(2x-10 | | v-8÷5=3 | | 3.6x-4.8=4.8-1.2x | | 5x+5.68=3x | | x-4/7=8-3x/35 | | X=360+2x+12 |